

Workshop | 5-6 September 2023

ERMABI – Exploiting the Resilience of Masonry Arch Bridge Infrastructure

Fast-running analysis models for masonry arch bridges

Nicola Grillanda, Linwei He

List of contents

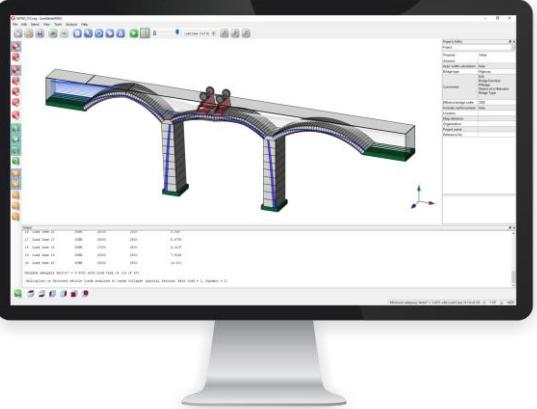
- Background
- Introduction to DLO
- Key concepts:
 - homogenization
 - parametric geometry
- Homogenized DLO formulation
- Numerical examples
- Conclusions

Background

Backgrounds

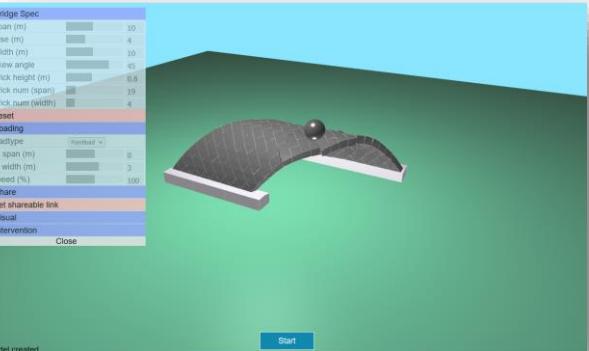
List of fast-running tools:

Rigid-block Analysis

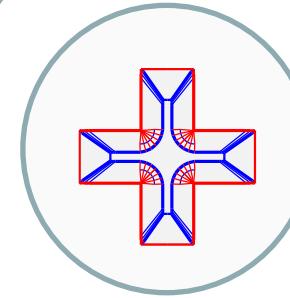


A screenshot of a computer monitor displaying a 3D model of a bridge structure. The model is composed of red and white blocks, representing rigid blocks. The monitor is positioned on a white stand.

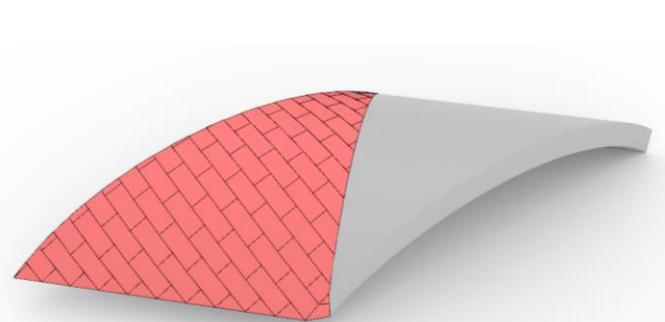
Physics Engine



A screenshot of a computer monitor showing a 3D physics engine interface. On the left, a table lists bridge specifications: Span (m) 10, Rise (m) 4, Width (m) 20, Skew angle 0°, Block height (m) 0.8, Block num (span) 19, Block num (width) 4. On the right, a 3D model of a bridge arch is shown with a ball resting on it. The Project Chrono logo is overlaid on the top left of the monitor.



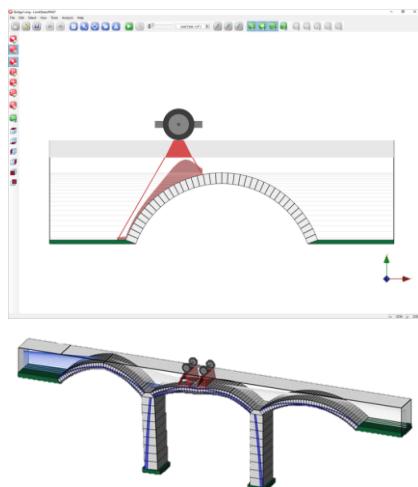
**(D)iscontinuity
(L)ayout
(O)ptimization**



A 3D rendering of a bridge structure. The structure is composed of red and white blocks, representing discontinuities in the layout. A red and white cross-shaped logo is overlaid on the top left of the bridge.

Rigid block analysis

- Simple, various tools are available
- Requires detailed geometry
- Various block interaction rules possible
- Possibility to identify local failure modes



LimitState:RING



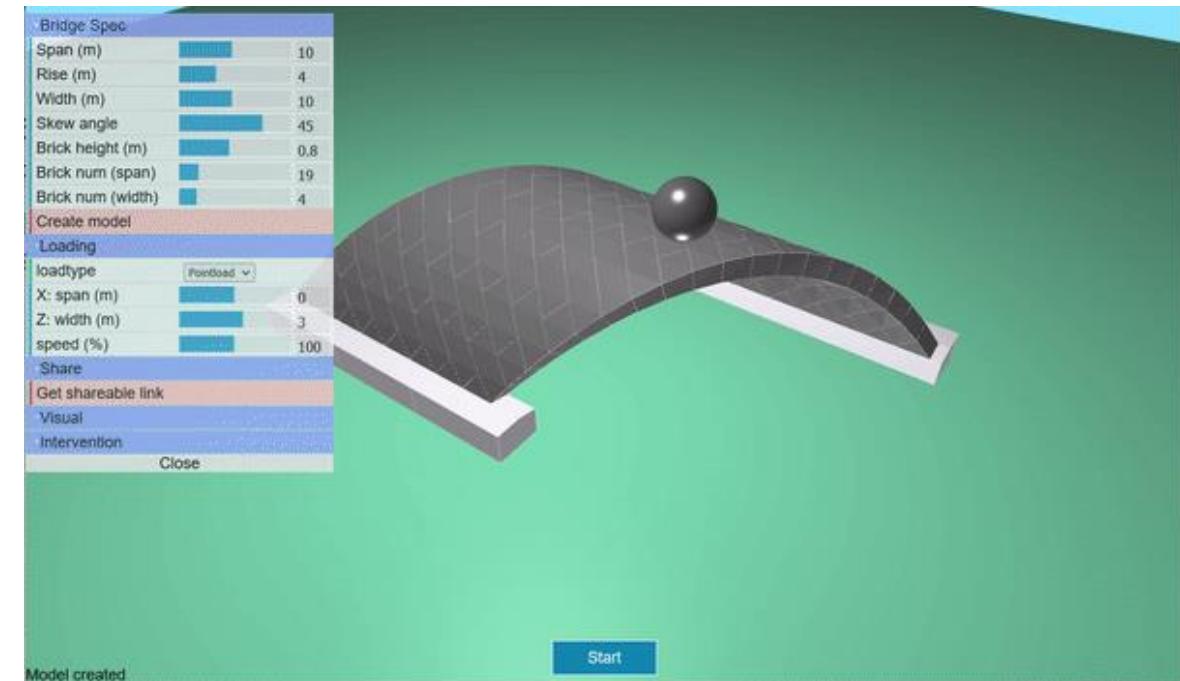
LimitState:RING 3D
(under development)

**Parametric
modelling workflow**

Physics engine

Web-app to simulate collapse behaviour of square or skew bridges:

- **Fast**: simulation in seconds/minutes
- **Web-app**: zero configuration
- **Interactive**: pause and intervene
- **Versatile**: freely impose arbitrary abutment block settlements



Cons:

- Qualitative results only
- Only masonry elements modelled

See <https://ermabi.org> (under development)

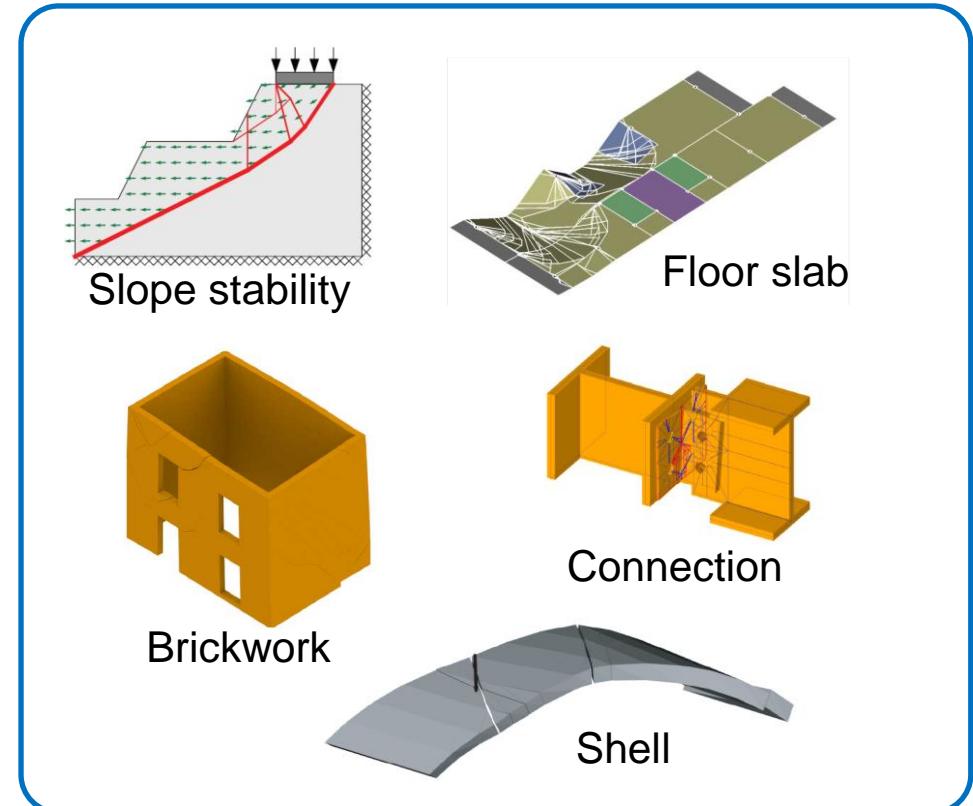
Discontinuity layout optimization (DLO)

Novel numerical process to identify the load carrying capacity of structures:

- **Reliable**: mathematics ensures highly accurate solutions
- **Efficient**: problems with $>10,000,000$ variables solvable on modern laptops.
- **Opensource**: shared Python scripts.
- **Versatile**: broad spectrum of applications

Cons:

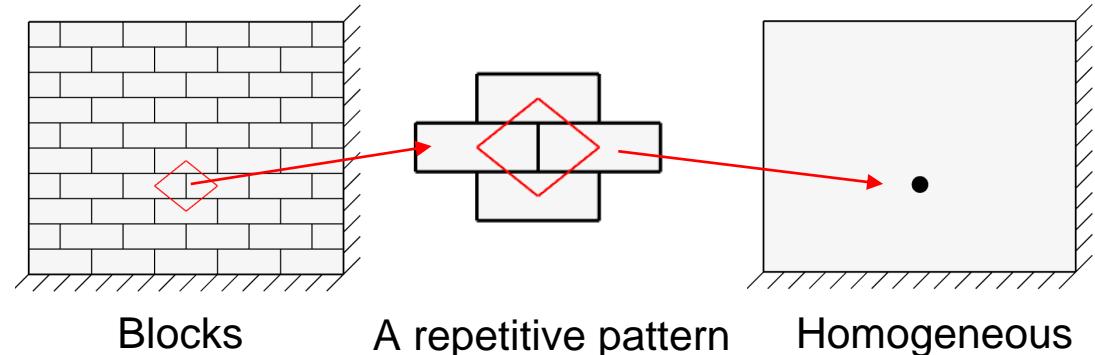
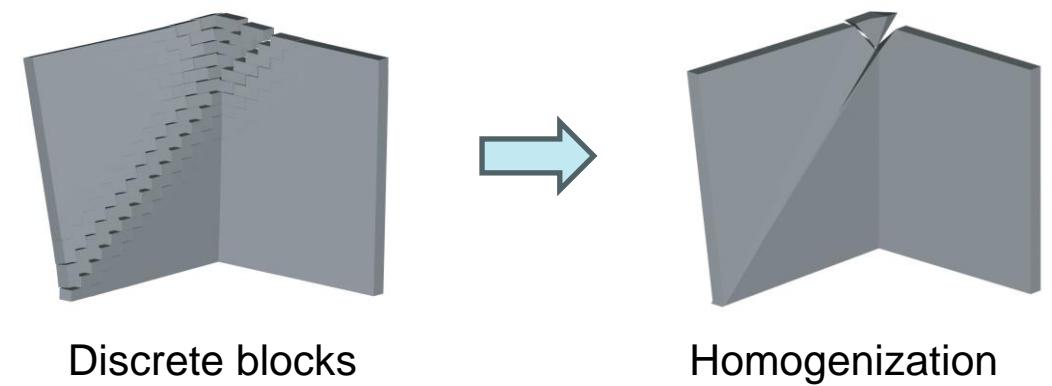
- Developments needed in order to apply to masonry arch bridges



Homogenized DLO

Modelling masonry blocks in DLO:

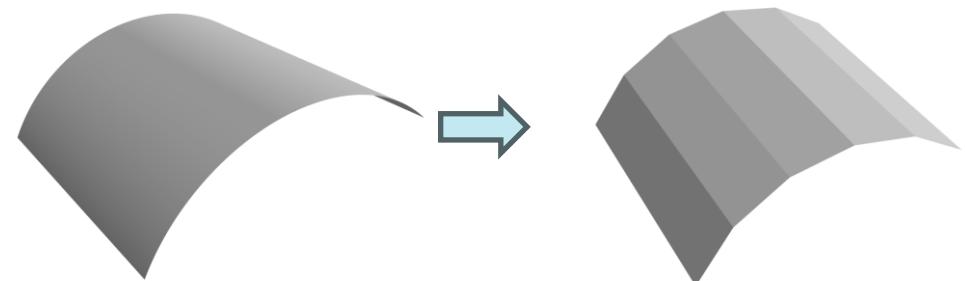
- Homogenization method
- Potentially complicated failure criteria, e.g., crushing behaviour
- System failure modes, insensitive to small geometry variations
- Effectively models infinitely small blocks; conservative results



MA bridges – two DLO approaches

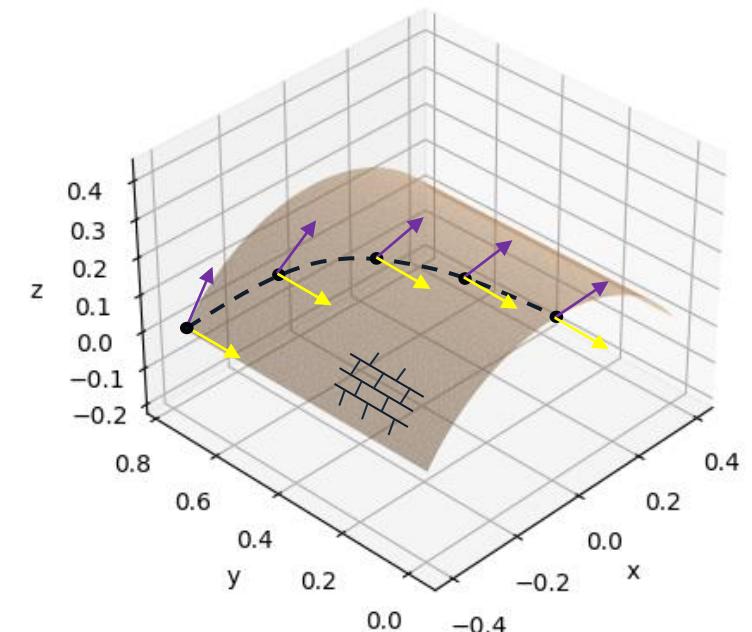
Approach 1 - piecewise approximation:

- Planar DLO problems are studied extensively
- Easy to model complex geometries
- Potentially inaccurate due to approximation



Approach 2 – parametric geometry representation

- Accurate geometry, potentially better (more conservative) upper-bound results
- More difficult mathematics
- Requires further validation



Introduction to DLO

Introduction to DLO

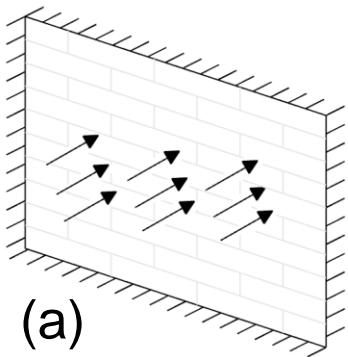
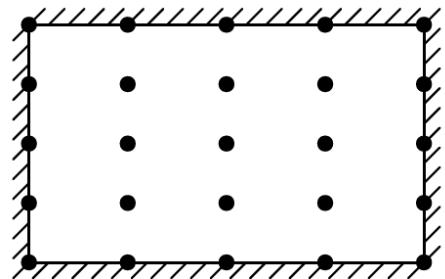
Standard DLO method

For a given (a) structural problem:

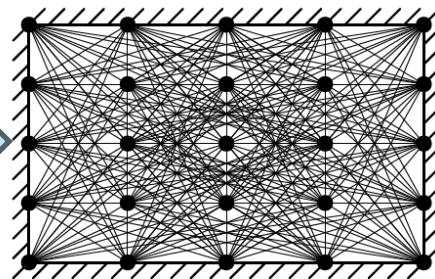
(b) discretise with nodes

(c) interconnect nodes with possible discontinuities

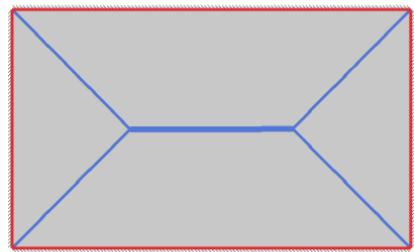
(d) find **critical yield-line pattern** and **load factor** through **optimization**



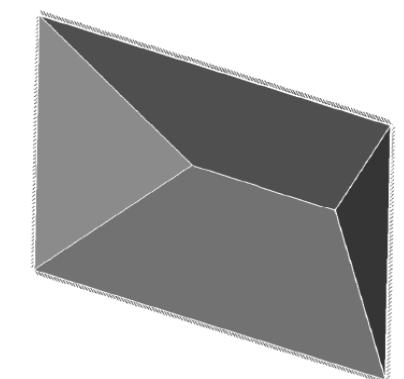
(b)



(c)



(d)



Introduction to DLO

Formulation

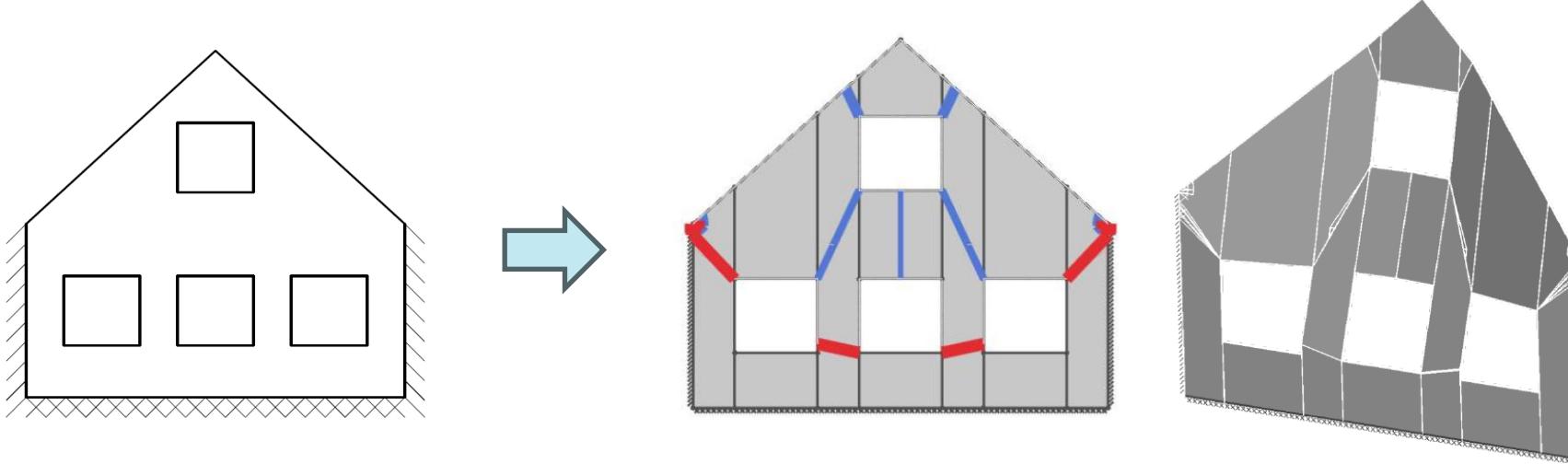
$$\begin{array}{ll} \text{minimize} & \lambda \mathbf{f}_L^T \mathbf{d} = -\mathbf{f}_D^T \mathbf{d} + \mathbf{g}^T \mathbf{p} \\ \text{subject to} & \mathbf{Bd} = \mathbf{0} \\ & \mathbf{Np} - \mathbf{d} = \mathbf{0} \\ & \mathbf{f}_L^T \mathbf{d} = 1 \\ & \mathbf{p} \geq \mathbf{0} \end{array} \quad \begin{array}{l} \text{Principle of virtual work} \\ \text{Compatibility} \\ \text{Flow rule} \\ \text{Unit live-load work} \\ \text{Non-negative plastic multipliers} \end{array}$$

Advantages:

- Simple linear programming problem
- Efficient
- Accurate representation of failure modes

Introduction to DLO

Sample DLO application inspired by a real case



Drawbacks

- actual masonry texture is ignored
- not conceived for curved geometries

...still not suited for masonry bridges

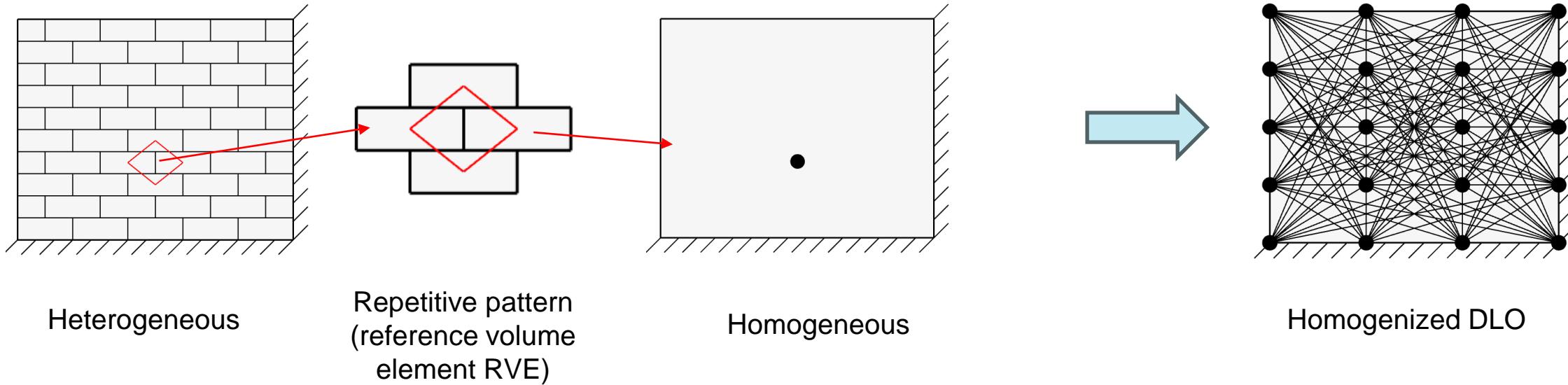
Required:

- (1) homogenization
- (2) parametric geometry

Key concepts

Key concepts: (1) homogenization

The theory of **homogenization** is here used to move from an heterogeneous material (the actual masonry texture) to an equivalent homogenous one.



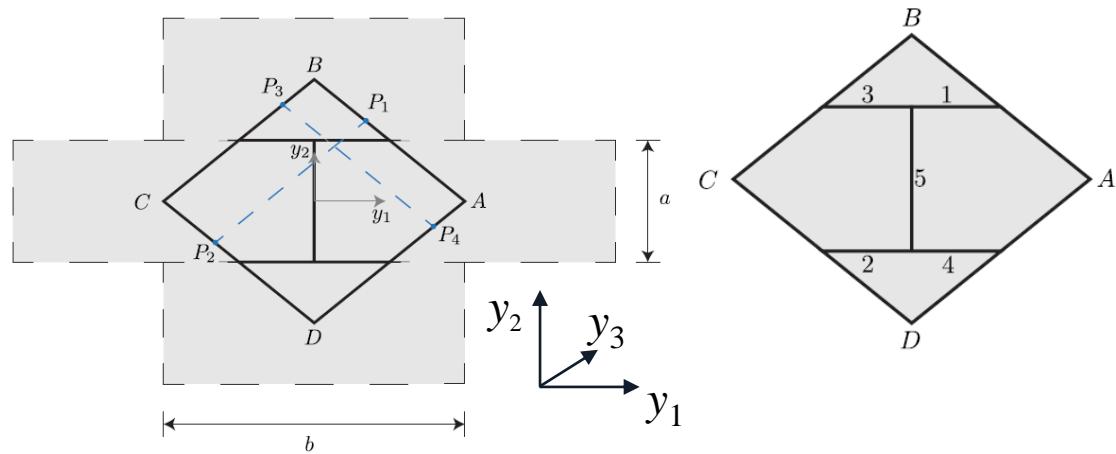
DLO can be applied on the homogeneous material, provided that:

- equivalent energy dissipation,
- models all potential failure modes,
- flow rule is satisfied.

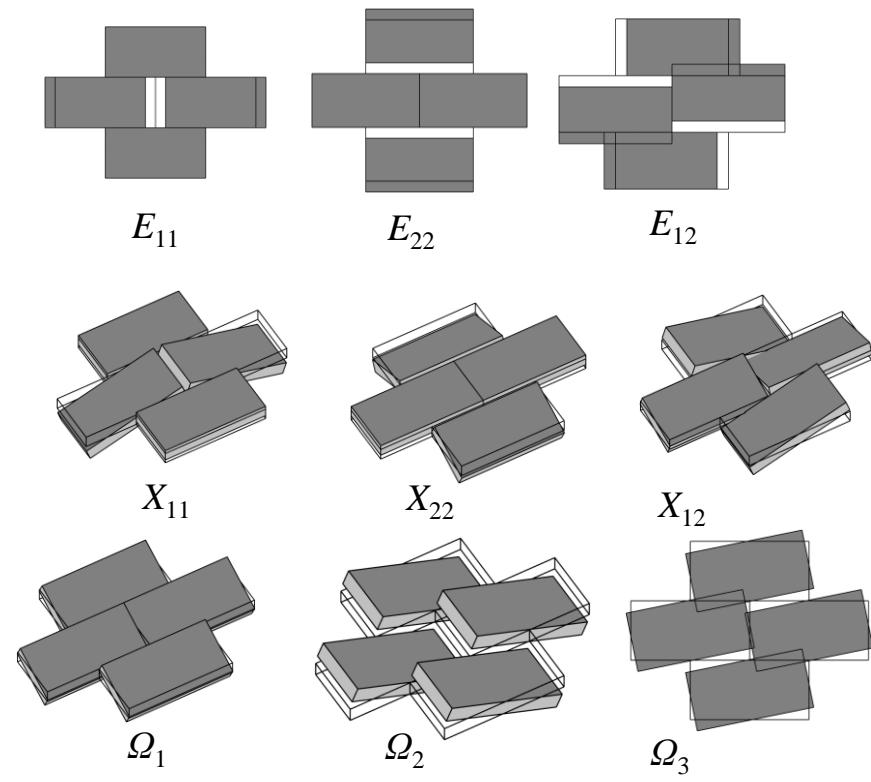
Key concepts: (1) homogenization

Main steps:

- identify RVE and microscopic variables (strains, curvatures and rotations):

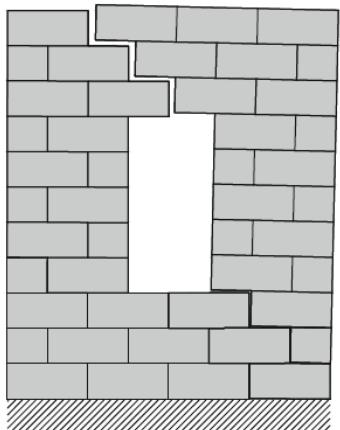
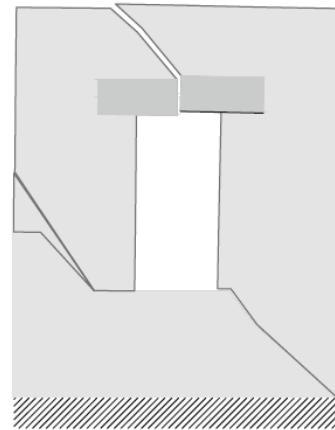
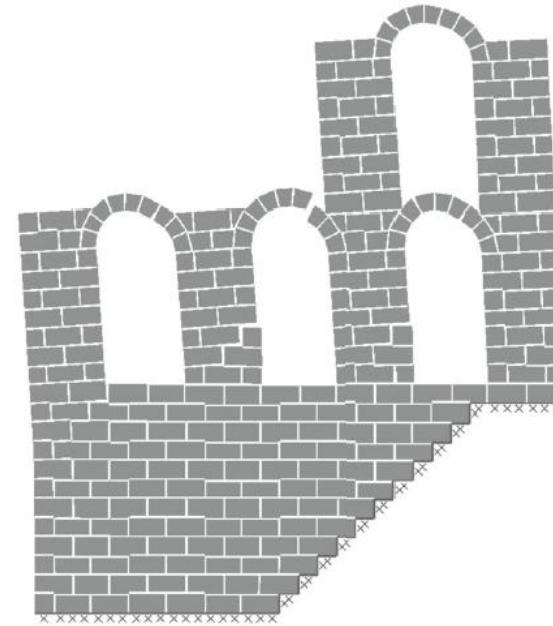
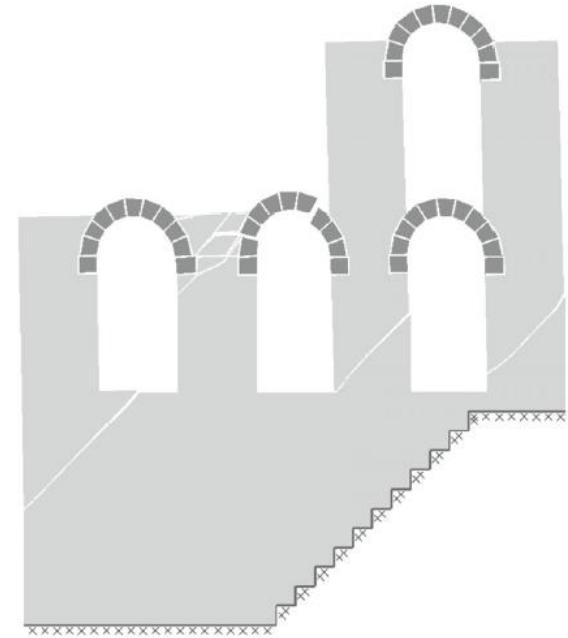


- evaluate the energy with reference to the microscopic variables
- derive the constraints related to the associated flow rule (no compenetration, proper representation of shear)



Key concepts: (1) homogenization

Homogenization DLO available for in-plane loaded masonry structures

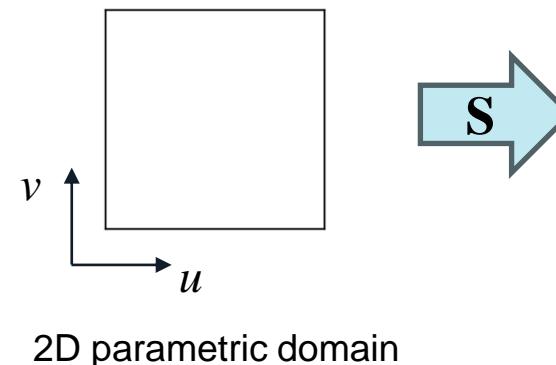


However, the case of masonry arch bridges requires a generalised geometrical representation.

Key concepts: (2) parametric geometry

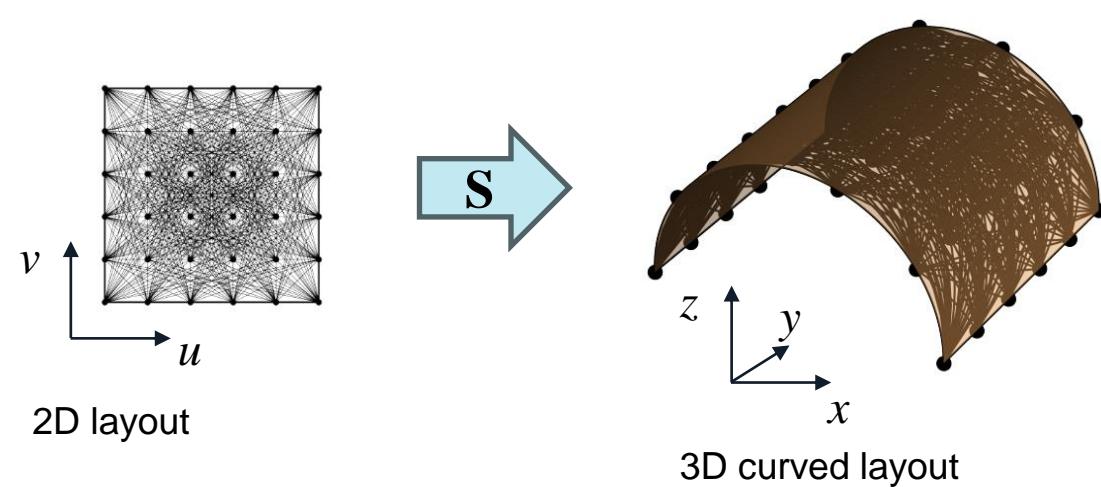
A geometrical representation via **parametric surfaces** $\mathbf{S}(u, v)$ allows an easy modelling of curved shapes.

$$\mathbf{S} : [0, 1]^2 \rightarrow \mathbb{R}^3, \mathbf{S}(u, v) = \begin{bmatrix} S_x(u, v) \\ S_y(u, v) \\ S_z(u, v) \end{bmatrix}$$



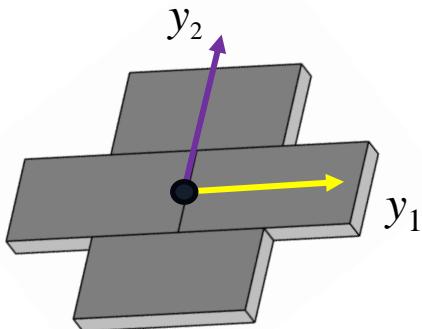
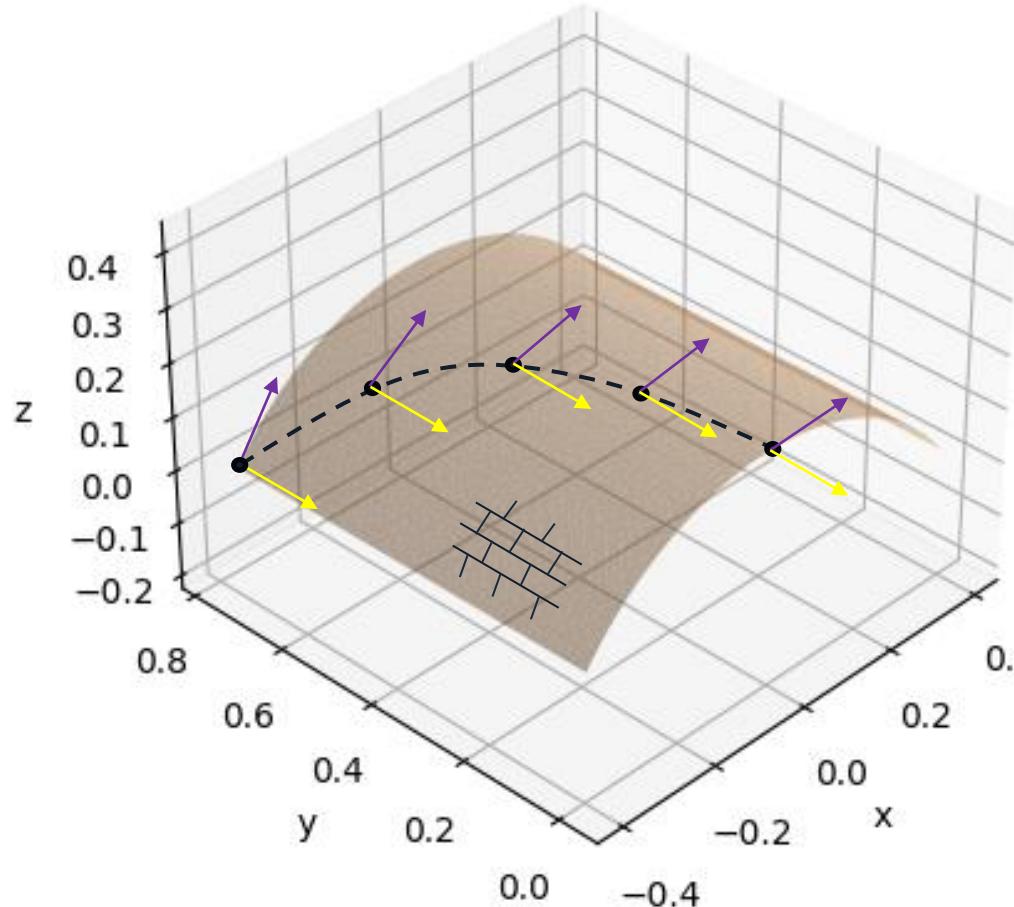
In DLO:

- nodes defined in the parametric domain
- 3D layout is automatically generated



Key concepts: (2) parametric geometry

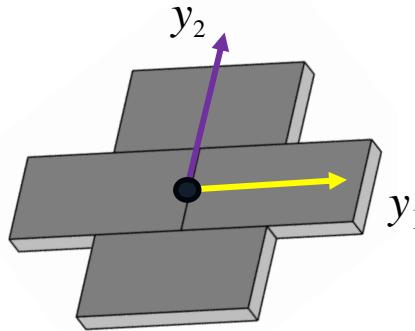
Some points to be mentioned about curved discontinuities:



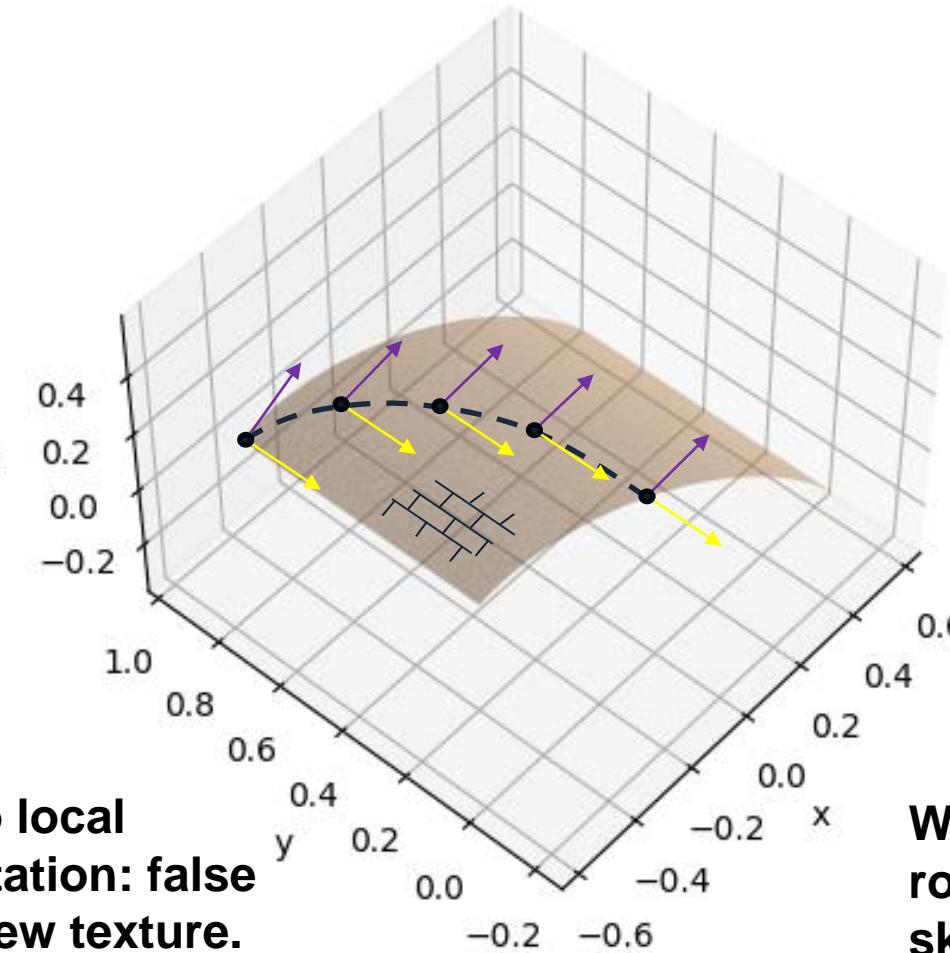
- The flow rule must be imposed along a certain number of collocation points.
- Local axes define the **texture orientation**.
- Local rotation can be required.

Key concepts: (2) parametric geometry

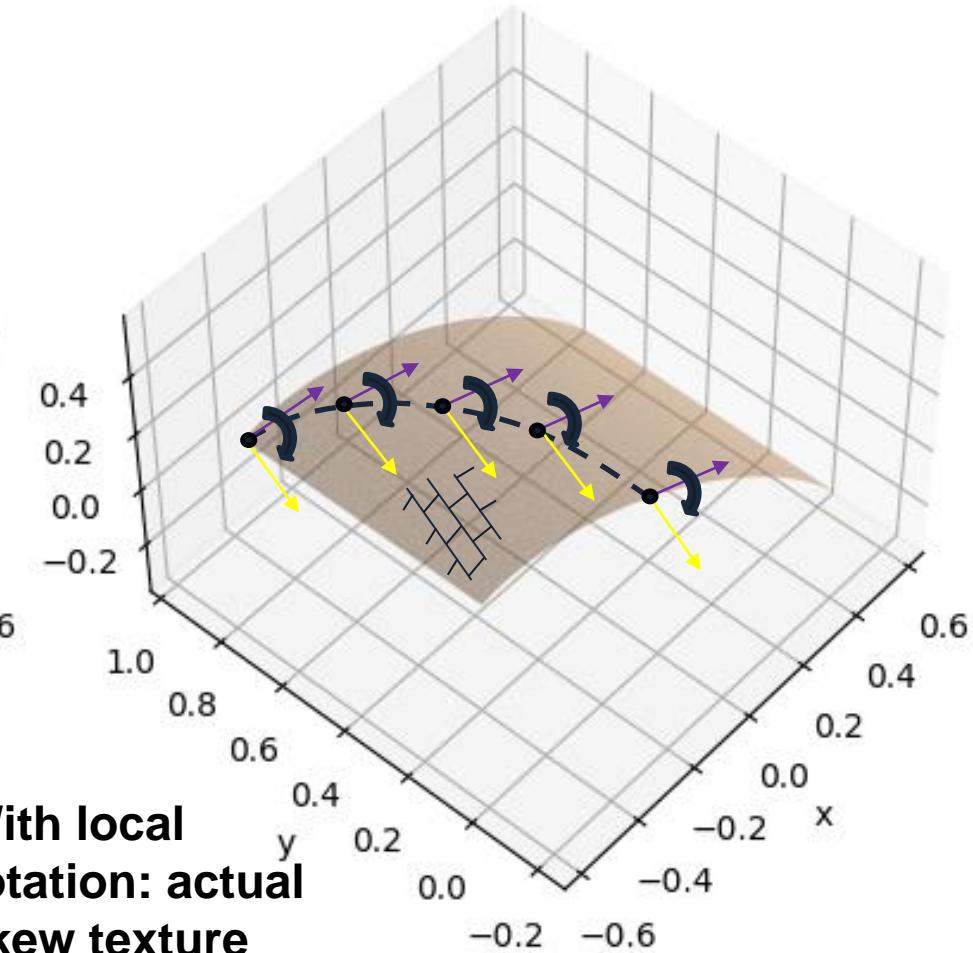
Some points to be mentioned about curved discontinuities:



No local rotation: false skew texture.



With local rotation: actual skew texture



Homogenized DLO formulation

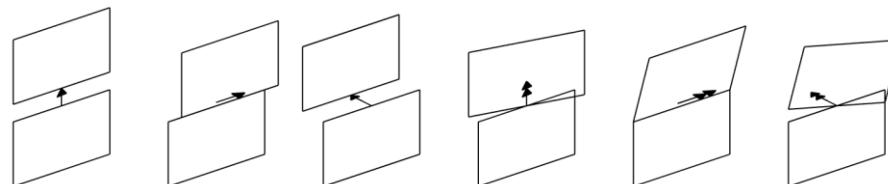
Homogenized DLO formulation

The multi-scale DLO formulation is obtained by combining DLO with homogenization and parametric geometry:

minimize	$\lambda \mathbf{f}_L^T \mathbf{d} = -\mathbf{f}_D^T \mathbf{d} + \sum_i^m l_i \mathbf{w}^T \mathbf{e}$	Energy equivalence
subjected to	$\mathbf{Bd} = 0$	Compatibility
	$\mathbf{f}_L^T \mathbf{d} = 1$	Unitary live load work
	$\mathbf{e} = \mathbf{Td}$	Coupling between strains and displacements
	$\mathbf{P}(\mathbf{e}) \leq 0$	Flow rule

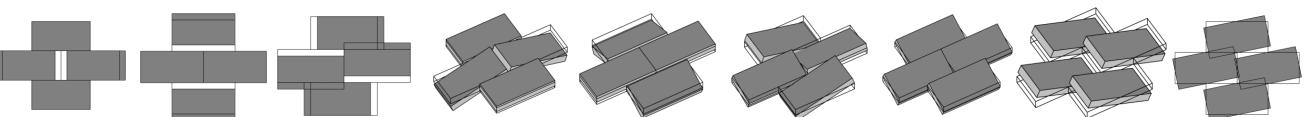
Displacement jumps (for each discontinuity):

$$\mathbf{d}_i = [d_n \quad d_s \quad d_t \quad r_n \quad r_s \quad r_t]^T$$



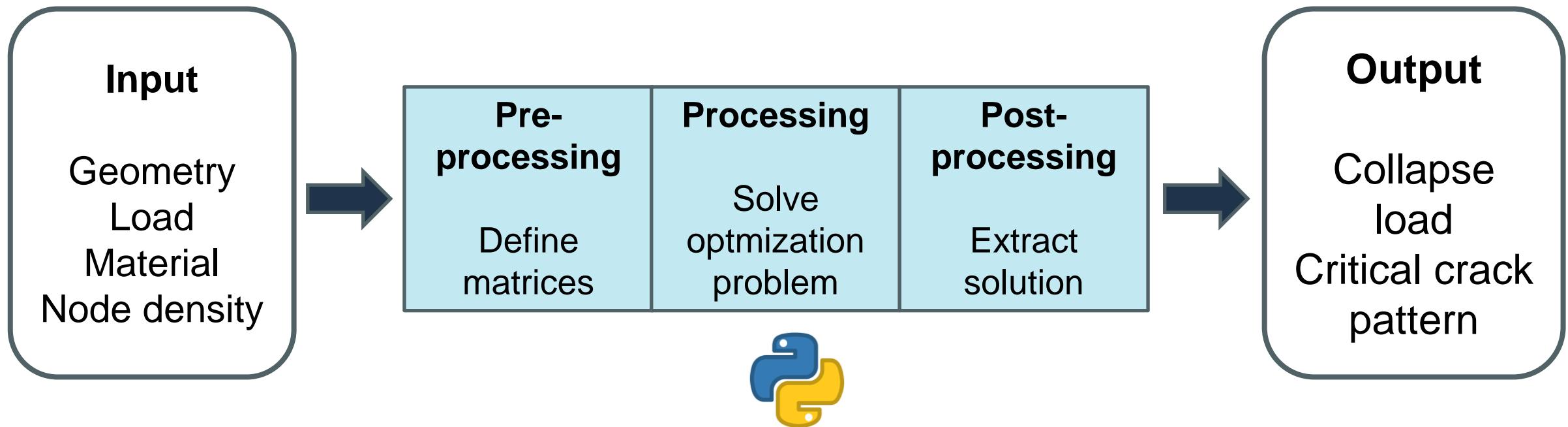
Strains at the RVE (for each collocation point) :

$$\mathbf{e}_k = [E_{11} \quad E_{22} \quad E_{12} \quad X_{11} \quad X_{22} \quad X_{12} \quad \Omega_1 \quad \Omega_2 \quad \Omega_3]^T$$



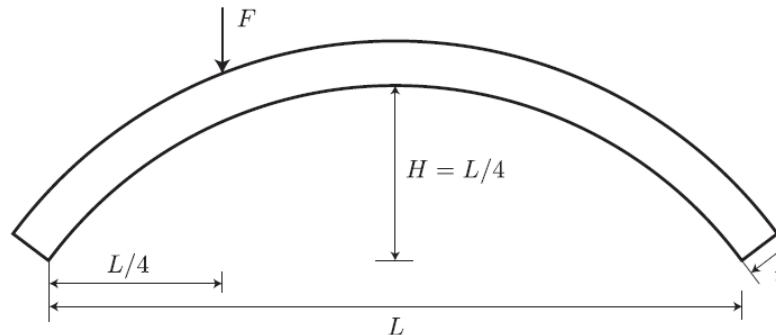
Homogenized DLO formulation

Simple workflow

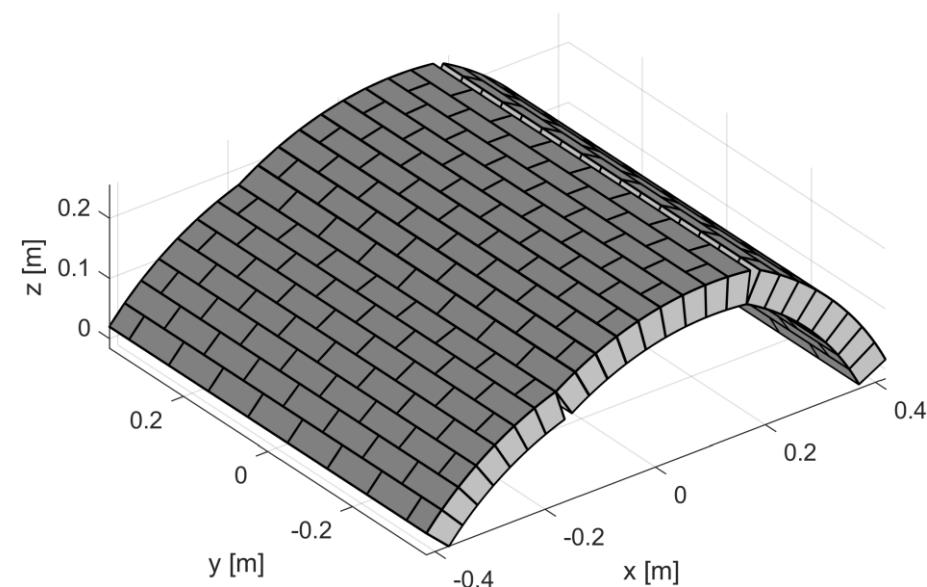


Numerical examples

Numerical examples: square arch under line load



$L = 750 \text{ mm}$
 $t = 54 \text{ mm}$
 $w = L$
 $b/a = 2.47$
 $\gamma = 23.6 \text{ kN/m}^3$
 $c = 0$
 $\mu = 0.75$

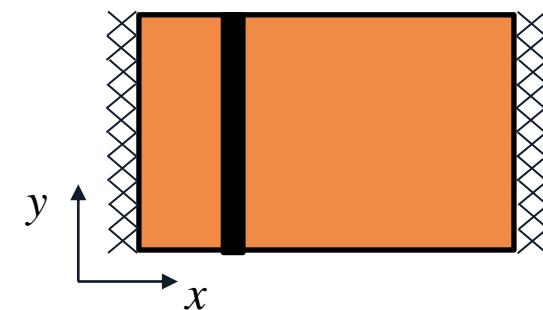


Collapse load: 0.79 kN

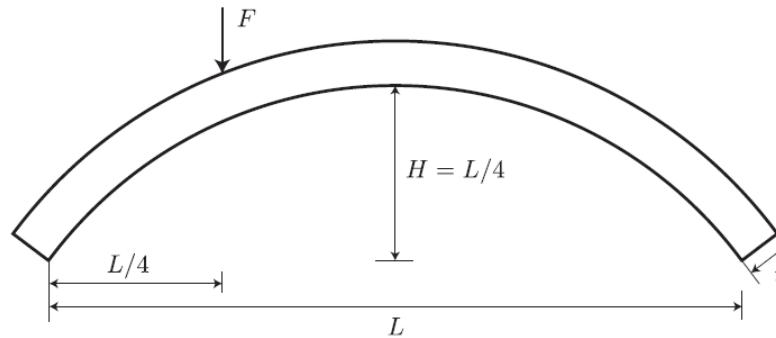


Collapse load: 0.785 kN

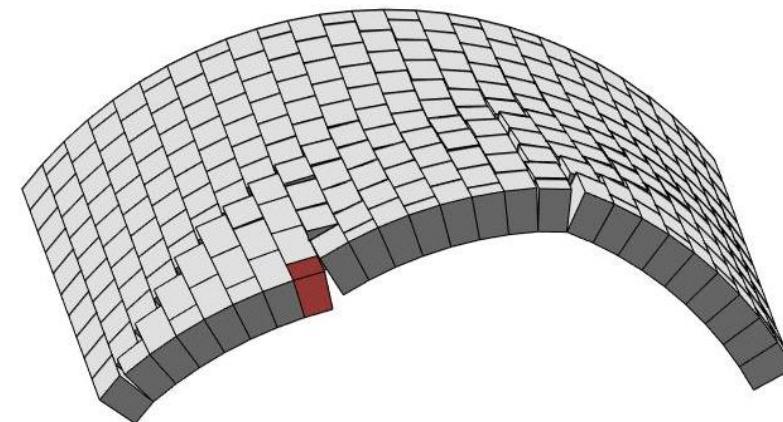
Load position



Numerical examples: square arch under point load



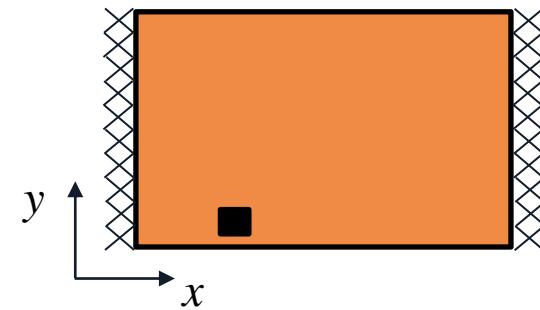
$L = 750 \text{ mm}$
 $t = 54 \text{ mm}$
 $w = L$
 $b/a = 2.04$
 $\gamma = 23.6 \text{ kN/m}^3$
 $c = 0$
 $\mu = 0.75$



Collapse load: 0.68 kN

Collapse load: 0.49 kN

Load position



Conclusions

Conclusions

- The efficacy of three fast running tools are being explored to model 3D masonry arch bridge behaviour (rigid block, physics engine and DLO)
- In the case of the DLO-based tool:
 - DLO is a fast and potentially highly accurate limit analysis tool
 - Masonry arch bridges can be modeled via homogenized DLO
 - Parametric geometry allows accurate geometrical representation
 - 3D failure mechanisms appear to broadly match rigid blocks analysis solutions